Approximating Action-Value Functions:
Addressing Issues of Dynamic Range

Mance E. Harmon
Adaptive Network Laboratory
Department of Computer Science
University of Massachusetts
December 17, 1998

ABSTRACT

Function approximation is necessary when applying RL to either Markov decision
processes (MDPs) or semi-Markov decision processes (SMDPs) with very large state
spaces. An often overlooked issue in approximating Q-functions in either framework
arises when an action-value update in a given state causes a large policy change in other
states. Another way of stating this is to say that a small change in the Q-function results in
a large change in the implied greedy policy. We call this sensitivity to changes in the Q-
function the dynamic range problem and suggest that it may result in greatly increasing
the number of training updates required to accurately approximate the optimal policy. We
demonstrate that Advantage Learning solves the dynamic range problem in both
frameworks, and is more robust than some other RL algorithms on these problems. For an
MDP, the Advantage Learning algorithm addresses this issue by re-scaling the dynamic
range of action values within each state by a constant. For SMDPs the scaling constant

can vary for each action.

DISTRIBUTION STATEMENT A
Approved for Public Release

Distribution Unlimited 2 0 0 0 0 3 0 7 0 5 6

DIIC QUALITY INSFECTED 3

1. INTRODUCTION

Reinforcement learning (RL) systems are commonly used to solve Markov Decision
Processes (MDPs), tasks in which the interval between decisions is fixed. RL systems
should be general enough to solve tasks that require performing actions at a mixture of
- time scales (i.e., the RL system makes decisions concerning low-level, as well as high-
level, actions). Such tasks are commonly called semi-Markov decision processes
(SMDPs) and differ from MDPs in that the interval between decisions varies. People
sometimes use hierarchies for solving large MDPs. When doing so, the problem is by

definition an SMDP.

One way to solve MDPs and SMDPs is to find an approximation of the action-value
function for the task. The optimal policy can easily be extracted by choosing the action
with the greatest approximated value in each state. One of the most common RL
algorithms for finding action-value functions is Q-learning (Watkins, 1989). For large
MDPs and SMDPs it may be necessary to combine Q-learning with general function

approximation to find approximations of the action-value functions (Q-functions).

For a given function approximator and task (MDP or SMDP), it may be the case that an
action-value update in a given state always causes a large policy change in other states. In
other words, a small change in the O-function will result in a large change in the implied
greedy policy. We call this the dynamic range problem and suggest that it may result in
greatly increasing the number of training updates required to accurately approximate the

optimal policy.

We demonstrate that Advantage Learning solves the dynamic range problem in both MDP
and SMDP frameworks, and is more robust than Q-learning on these problems.
Advantage Learning and its forerunner, Advantage Updating, a generalization of the O-
learning algorithm, have been discussed previously in the context of continuous-time

MDPs (Puterman, 1994) in Baird (1993, 1994), Harmon, Baird, and Klopf (1995, 1996),

Baird, Harmon, and Klopf (1996), and Harmon and Baird (1996a, 1996b)." Here we
present a general framework for discussing issues of dynamic range in action-value
functions. We then use this framework for analyzing the action-value functions learned by
the Q-learning algorithm for both MDPs and SMDPs, which we call Q-functions following
common practice. We describe features we consider desirable in action-value functions
and derive an operator that maps a given O-function to our desired function, the
Advantage function. We provide theoretical justification and empirical evidence of the

desirability of approximating Advantage functions instead of O-functions.

Section 2 provides the notation used throughout this paper and background information
on MDPs and RL. Section 3 discusses issues involved in accurately approximating Q-
functions. In Section 4 the concept of an Advantage function is derived and empirical
results are presented for both MDPs and SMDPs that illustrate the properties of this
function. Section 5 presents alternatives to using Advantage functions and includes

closing remarks.

2. BACKGROUND AND NOTATION

RL systems typically use a set of real-valued parameters to store the information that is
learned. When a parameter is updated during learning, the notationw < k represents the
operation of instantaneously changing the parameter w so that its new value is £, whereas

w«=—Fk represents the operation of moving the value of w toward k. This is equivalent

tow,,, < (1-a)w,, + ak where the step size parameter a is a small positive number.

The functions stored in a learning system at a given time are represented by variables
without superscripts such as m, V, 4, or Q. The optimal functions that are being

approximated are represented by * superscripts, suchas 7, V', 4", or 0.

' A summary of these results is given in Appendix A.

2.1 Markov Decision Processes

A Markov decision process (MDP) is a system that changes its state based upon its
current state and an action chosen by a controller. The set of possible states and the set of

possible actions may each be finite or infinite. At time ¢, the controller chooses an action,

u,, based upon the state of the MDP, x,. The MDP then transitions to a new state, x,_,.
The state transition may be stochastic, but the probability, P(#,, x,, x,,,), of transitioning
from state x, to state x,,, after receiving action #, is a function of only x,, x,,,, and w,,
and is not affected by previous states or actions. The MDP also sends the controller a

scalar value known as a reward. The expected reward received by the controller as a

result of the transition from state x, to x.1is R(x,,#,).

A policy, m, is a function that specifies a particular action for the controller to perform in
each state x. The expected total discounted reward associated with a state x is tne

expected sum of rewards received when starting in that state: £ {Zioy rlx, = x} , Where

r, is the reward received at time step 7. The discount factor v, 0<y<1, is a parameter that

determines the relative significance of earlier versus later reward. The value of a state x,

V" (x), is the expected total discounted reward received for starting in state x and

choosing all actions according to a given policy 7. The value of an action, Q" (x,u), is

the expected total discounted reward for starting in state x, performing action #, and then

choosing all actions according to the given policy 7 .

An optimal policy, ", for a given MDP is a policy such that choosing #, = 7" (x,)

results in maximizing the expected total discounted reward for any choice of starting state.

If there are a finite number of states and actions, and ¥ <1, then at least one optimal

policy is guaranteed to exist.

2.2 State-Value Functions and Action-Value Functions

Roughly, the goal of RL is to find an optimal policy, 7" . Policies can be extracted from

either state-value functions (functions of state only) or action-value functions (functions of

both state and action). State-value functions are functions of only state; action-value
functions are functions of both state and action. Consequently, RL algorithms can
generally be grouped into two categories: those that approximate state-value functions,

and those that approximate action-value functions.

The goal of the RL system is to find a function V that satisfies the following equation for

all x;:

V(x,) = max E[R(x,,u) + 7V (x,,,)], (1)

where E indicates the expected value of performing action # in state x, .

The unique solution to equation 1 is the optimal state-value function V" . Equation 1 is

called the Bellman equation in dynamic programming (Bertsekas, 1987). The optimal
policy, 7", can be extracted from V" by letting 7(x,) = arg max E[R(x,)+ “"(xm)])

The goal of an RL system using Q-learning is to find a function Q that satisfies the

following equation for all (x,u) pairs:

O(x,,u,) = E[R(x,) +y max Q(x,,, Uy,)} . 2

The unique solution to Equation 2 is the optimal action-value function, Q". Equation 2 is

the Bellman equation for Q-learning. The optimal policy, 7", can be extracted from 0"

by letting 7(x,) = argmax Q" (x,,u) .

3. FOUNDATIONS: POLICY REPRESENTATION, DYNAMIC RANGE,
AND SENSITIVITY

3.1. The Method of Extracting = Has Significant Consequences

The choice of function to approximate '~ or Q" can have a profound effect on the

degree of accuracy needed in the approximation before the implied policy, 7, equals the

optimal policy, 7", in all states. To explain further and develop intuition, we present the
following deterministic MDP. The set of states is X = {O, .01,.02,...1} . There is a single

absorbing state, x=1.

This MDP can be visualized as a hallway with a door at one end (x=1). Given any initial

state, the goal is to maximize the total undiscounted reward necessary to exit the hallway.

Two actions are possible in every state: step forward (x,., = x,+.01), or step backward
(x,,, = x,—01), with the exception of the state x=0 in which both actions result in x=0.01.

Each action results in a negative unit reward (-1). The optimal state-value function, V",

and optimal Q-function, Q", for this MDP are graphed below.

States
X
E -2 ad o «¥uvulBoBr~i oo
o (o) o o o o o o o o o (@] o (=] o (e o o (=] o -
0 .
4
20 L
Values _40
V*{x
() _60
-80
-100
State-Value Function
States
X
8 w2 ad o8 <2 uvuldod8nioboeld
o o (o] o (o] o (=] o o (@] o (e} (o] (o] o o o o (] o

\

_
_

Q(X,U) _61 4
81 + //// Q(x.backward)
-101 ="
Q-function
6

Assuming that the state-value function is approximated by an affine function of the state, a

very small degree of accuracy is needed in the state-value function approximation before

7(x) = " (x) for all x. All that is required is for the slope of the approximation to have
the correct sign. In other words, if V' (x + 1) > V' (x) for all x, then 7(x) = 7" (x) for all x.
Because we have assumed a function approximator that generalizes well, very few training

samples will be needed to achieve this result.

However, this is not the case for the O- function. Here the policy is extracted by
comparing the relative action values within a given state. The action with the greatest
value is the policy’s choice for that state. This necessarily means that the action the
_approximation implies has the greatest value must correspond to the action with the
greatest value in the optimal Q-function for the same state, and this must be true for all
states. In the above example, Q" (x.forward) > Q" (x,backward) for all x (with the
exception of x=0). Therefore, the approximation,), must accurately reflect this ordering
for all x. In short, in the state-value function it takes a large change in parameters to
change the slope enough to change the policy, but in the O-function it takes only a tiny

change in the parameters to raise one line above the other, resulting in a change in policy.

Generalization is the term often used to refer to the change in the value of one state as a
result of training in another state. In the above example, when approximating § ",
generalization helps to quickly find an approximation that results in the correct policy in
every state. However, as we demonstrate below, when approximating Q°, generalization
may be a hindrance. Moreover, we demonstrate that one can alleviate the problem with a
simple transformation of the QO-function that results in a new action-value function that is

far easier to approximate.

3.2. Dynamic Range and Sensitivity

What properties of action-value functions make it difficult to achieve an implied policy of

7*? Should we simply use a different function approximator? Or, for a given function

approximator, can we transform the action-value function in such a way that we can

achieve an implied policy of 7" with fewer training examples?

To answer these questions, we now introduce a framework for discussing several

properties of action-value functions.

3.2.1. Dynamic Range

An important consideration is the relationship between the dynamic range of action values
in a given state and the dynamic range of state values. We define two variables, D, and
D,,, where sa refers to state-action and aa refers to action-action, to represent the two
distinct dynamic range ratios. Assuming a finite state set, the dynamic range over state

values is defined as

d,, = maxV(x) - minV (x).

Similarly, the dynamic range over all action values within a given state is defined as

d,, (x) = max Q(x,u) —min Q(x,u) .

We use the subscript of av1 for this quantity to distinguish it from a different dynamic

range of action values within a given state. Namely, we define d,,»(x,) as

s (3,0 =| max OCc,) |- 0Ce,).

We define the state-action dynamic range ratio, D.(x), to be d_, /d ., (x) with D_(x) =1

ifd

avl

d, (x)/d,,(x,u), again with D, (x,u) =1if d_,(x,u) = 0. Although presented here

avl

(x) = 0. The action-action dynamic range ratio, D,,(x,u), is defined as

for completeness, our discussion of action-value functions will not include issues of
action-action dynamic range ratio, D,,(x,u), until we address functions relevant to the

SMDP framework in Section 4.3.

Consider the action-value function presented below. The state-value dynamic range, di,,

is V(1) -V (0) =0—(-1) =1. The action value dynamic range over all actions in state .75,
da1(.75), 1s max Q(.75,u) — minQ(.75,u) = —25—(=.75) =5. Therefore,

D_(75=1/5=2.

-0.54
Values

-1.04

f
)

Da(.75)

Action-Value Function
154

3.2.2 Sensitivity

Another property of action-value functions to consider is the degree to which the implied

policy is changed as a result of a training update of the function approximator. The degree

to which the policy changes is a function of both the function approximator and Q". Here,

we want to know how a different choice of Q" would affect this policy sensitivity.

Let g(x) represent the difference between the value of the state, V(x), and the maximum

action value over the sub-optimal actions:

gx)=V(x)- max O(x,u).

ulucl ,Q(x,u)»V (x)

Given g(x) we can define Ag(x), the fractional change in g(x) resulting from a single

update to the parameter vector of the function approximator transforming g(x) to g(x'):

g(x)-gx)
g(x)

Agy 1 (x) =

Define the error in the approximation of the action value to be

E(x,u) =|Q* (x,u) - O(x,u)|, the fractional Change in the error as a result of a single

update to the parameter vector of the function approximator upon training on the state-

action pair (x,u) is

E'(x,u) - E(x,u)
E(x,u)

AE(x,u) =

For any triple (x',x,u), x,x'e X, x # x' , u €U, we define sensitivity, S(x',x,u), to be
the amount that g changes in state x' as a result of the change in the error in the

approximation of an action value in a different state x-

A 1
S(x',x,u):AEﬁg((;%.

If sensitivity is small, then the change in the error in the approximation of the value for
state-action pair (x,u) will have little effect on g in state x'. If sensitivity is high, then a
small change in the approximation of the value for state-action pair (x,u) will have a large
effect on g in state x'. If S(x',x,u)>1, then training enough in (x,#) to eliminate the error
there changes the policy in state x'. If S(x',x,u)<1, then training enough in (x,u) to

eliminate the error will not change the policy in state x'.

3.3. Are Sensitivity and Dynamic Range Related?

Consider an MDP with two actions available in each state, u, and u, . The optimal action
values Q" (x,u,) and Q" (x, u,) represent the long-term reward expected when starting in
state x and performing action u, or u, respectively for a single step, followed by optimal
actions thereafter. In a typical RL problem with a large (or continuous) state space, it is

frequently the case that performing one wrong action in a long sequence of optimal

actions has little effect on the total reward. In such a case, Q" (x,u,)and Q" (x, u,) are

relatively close (i.e., 2 small dynamic range dan1(x)). On the other hand, the values of
widely separated states typically will not be close to each other. Therefore ma. Q" (x,,u)

and max Q" (x,,u) may differ greatly for some choices of x, and x, resultiLg in a large

dsy, which in turn results in a large D,

10

The policy implied by a O-function for a given state is determined by the relative action

values within that state. Consider the case where updating QO (x,u) causes a change in
action values in x', and updating O(x'' ,u) causes a change in action values in x as we
approach the desired function Q". Our concern is only with what happens as the
approximation Q approaches the desired function Q. Early in the learning process it is
reasonable to assume large policy changes. If the O-function is stored in a function
approximation system that generalizes, the sensitivity, .S, in the implied policy will grow as
Dy, grows. In cases where the penalty is small for one wrong action in a sequence of many
actions, the dynamic range of action values within a given state is small, and the implied

policy will be sensitive to generalization.

The change in the difference between the value of the action considered optimal in x' and

the maximum value over sub-optimal actions in x' as a result of updating the value of

Q (x,u) will likely be large, thus corrupting the learned policy in x'. The policy in state x

may accurately reflect the optimal policy after the update, z(x) = 7" (x). However,

because of the large sensitivity, S(x, x'' ,u), the policy in state x will also likely be

corrupted as a result of updating the value for some state-action pair Q (x'"',u). Thus, the

number of training updates required to achieve an implied policy that is an adequate
approximation of 7" may be very large. This problem is not a property of any particular

function approximation system; rather, it is inherent in the definition of O-functions.

3.4 Experiment Set #1

3.4.1. The Hall Problem
For the purpose of illustrating the effects of a large D, we consider the following class of
finite, deterministic MDPs. Each MDP has 10(2') states, where i indicates the i MDP,
- 3(2)
The set of states, X;, for MDP M;1s X, = {géj} . The set of actions possible in

j=0

11

each state for every MDP in the class is {backward, forward} . The one-step dynamics for

each MDP are defined by the following:

if u = backward and x > 0

0 if u = backward and x =0

Jieu) = if x=1 [

X+ 5(22) otherwise

The reward function, R, is defined as R, (x,u) = 5(71) for all

x € X,,u € {backward, foward} . Finally, for each MDP, there exists a single terminal

state, x=1.

Each MDP can be visualized as a hallway with a door at one end (x=1). There are two
actions available to the RL system in each state: step forward, and step backward (with
the exception of the initial state, in which case both action result in a step forward). The

objective is to successfully exit the hallway through the door.

Each MDP differs only in the size of the “step” in the hallway (i.e. the transition distance
from x to x'). For example, MDP M has a total of five non-terminal states: X,={0, 0.2,
0.4, 0.6, 0.8, 1}, with a transition distance Ax of 0.2. MDP M, has a total of 10 non-
terminal states: X,={0, 0.1, 0.2, ..., 0.8, 0.9, 1}, with a transition distance of 0.1. The
reward for each transition is the negative of the transition distance. Therefore, for M5,

Rz(X,u) =-0.1.

Each graph below depicts the optimal action-value function, Q", for selected MDPs from

this class, given that rewards are discounted by y™*. In each experiment the RL system is
initially placed at the end of the hallway opposite the door (x=0). Note that for all MDPs

the Q-values in state 0 are identical because both actions cause a transition to state O+Ax.

12

Q(x,u)

Figure 1: MDP M,, D,~2 The short dashed line represents d,,, the difference between the value of
moving forward and backward The long dashed line represents the difference in the maximum and
minimum state values over the entire domain.

Q(x forward)

Qx.u)
)
(o))

O(x,backward)

Figure 2: MDP M, Dsa~4 There are twice the number of states in M, than in M,. The value of d,.
remained unchanged while the value of d,, was reduced by approximately one half in all states other than
x=0. Notice this pattern holds in true in Figures 3 and 4 below.

024
04 1
-06 |

Q(x,u)

Ox,backward)

-0.8

Figure 3: MDP M,. Dsa~8

0 et
-0.2
S 04 O(x forward)
X
G .06
Q(x.backward)
-0.8
-1
X
Figure 4: MDP M;, Dsa~16
O FHHHHHTHHHHHHHH R
-0.2
O(x forward)
3 04
’3
C 06
O(x,backward)
-0.8
-1

Figure 5: MDP My, D,,~32

Figures 1-5 clearly demonstrate that as the length of the trajectory through state space
(measured in state transitions) increases, the significance, with respect to total reward
received, of performing a single sub-optimal action decreases. This results in an increase
in Dy, (i.e., a decrease in d,,, for each state relative to the dynamic range for state values,
ds). As stated earlier, the policy for a given state is extracted from the approximation by
taking the argmax over action values in that state. Therefore, the action values in each
state must be approximated with a degree of accuracy that ensures correct relative values.
As D;, increases, the degree of accuracy required in the approximation increases.
Equivalently, as D,, increases, the degree of sensitivity, S, in the implied policy increases.
When using a function approximator that generalizes, it may become very difficult or

impossible to achieve an adequate approximation of 7"

14

3.4.2 Empirical Results

We performed sets of supervised learning experiments to demonstrate the validity of this
assertion. We chose to use supervised learning rather than RL to clearly demonstrate that
the objective action-value functions are at issue, not other characteristics of *he MDP such
as the number of states. In our experiments the optimal action-value functions of MDPs
Mo, M, M;, and M3 were used as the objective functions. In each experiment, two
CMAC:s (Albus, 1981) were used to represent the action-value function (one for each
action). Each CMAC had 10 tilings. Each tiling had 11 tiles, each of which covered 10%
of state space (excluding boundaries). In other words, each tile had an effect on 10% of

the action values; i.e., generalization extended over a tenth of the domain for all MDPs.

By a trial we mean the process of performing parameter updates until the stopping
criterion is met. The stopping criterion is to achieve an approximation of the action-value
function that implies the optimal policy in every state. Batch weight updates were
performed; the parameters of the function approximator were updated only after the
presentation of all input-output pairs. The performance measure was the number of

weight updates required before achieving the stopping criterion.

For each MDP, the learning rate was optimized. Specifically, for a given learning rate, 10
independent trials were performed (each initialized with a different random number seed),
and the average number of updates required to achieve the stopping criterion was
determined. The learning rates were then optimized to 2 significant figures. The results

are given in Figure 6:

1000
100
10

Epochs

Figure 6: Time To Learn Policy

The number of updates required increases with a decrease in transition distance (i.e., an
increase in Dy,). Figure 6 shows that the rate of growth in the number of weight updates
(as a function of transition distance) required to achieve the stopping criterion is quite

large.

4. ADVANTAGE FUNCTIONS

As stated in the previous section, the greedy action implied by an action-value function in
a given state is determined by the relative action values within that state. If the function is
represented by an approximation system that generalizes across states, the implied policy
may be sensitive to the generalization. The degree of sensitivity scales with Ds,. In cases
where the penalty for one wrong action in a sequence of many actions is small, the
dynamic range of action values within a given state, d,,;, decreases, and the implied policy

becomes even more sensitive to generalization.

One solution to the state-action dynamic range problem would simply be to exaggerate the
differences in action values within a state (i.e., re-scale the action-value dynamic ranges,
dan1 and d,,;), while maintaining the state values for all states (i.e., the state-value dynamic
range, d,,, remains unchanged), thereby decreasing D,, and decreasing the sensitivity of
the implied policy to generalization. Note that simply scaling the function by a constant
does re-scale d.., but it also re-scales d,, by the same amount and therefore does not

achieve the goal of decreasing D,

16

4.1 Derivation Of Advantage Function

We begin by defining an operator, F, on the space of action-value functions that achieves

our desired goal:

F:@® >0, where ©={f|f: X xU >R} .

Given a function ¢ € ® such that c(x,u)>1 for all x € X and all # €U, our objective is to

find an F'such that for all x € X, u,u'e U, andQ € ®, two properties are satisfied.

Letting A=F(Q), they are:

i) max A(x,u) = maxQJ(x,u),
if) A(x,u")— A(x,u) = c(x, ')[Q(x,u') - Q(x,u)].

Property (7) ensures that the state-value dynamic range, d,, does not change as a result of
the transformation. Property (i7) ensures that the action-value dynamic range, d.,, is

increased by a factor of c(x,u), thereby decreasing Ds,.

Is there an F that satisfies (¢) and (#7) and, if so, is it unique? We will show that such an /*

does exist and s unique and is given by:

A(x,u) = max O(x,u'y—c(x, u)[m”z}x O(x,u")— Q(x,u)] 3)

where u and ' are arbitrary actions in state x. > The derivation of Equation 3 follows:

Rewriting (ii), we see that A(x,u) = c(x,u")Q(x,u) + A(x,u") — c(x,u")Q(x,u'").

Substituting for A(x,u) in (7) produces

% On first observation it might appear appropriate to rewrite (1) as a weighted average, weighted by ¢ and
by (1-¢). However, we choose ¢>1 for all state-action pairs.

17

max[c(x, u)Q(x,u)+ A(x,u')—c(x,u")O(x, u')] =maxQ(x,u) forany '
A, u'y+c(x,u')[max O, u)—Q(x,u')} = max Q(x, u)
A(x,u") = max Q(x,u) — c(x,u')[max O(x,u)—-O(x,u')]
which is the same as 4A(x,u) = max O(x,u')—c(x, u)[lngx O@x,u")—Q(x, u)}
Thus, for a given function ¢ such that c(x,u)>1 for all (x,u) pairs, the derivation shows that
F exists and is the unique operator that has properties (7) and (if). We call 4=F((Q) the
Advantage function (Baird, 1993) derived from (J. Note that the O-function is a special

case of an Advantage function. If c(x,#)=1 for all (x,#), Equation 3 reduces to the original

QO-function.

Figure 7 graphically demonstrates the results of transforming the Q-function into the

corresponding Advantage function when c is a constant.

Qlx,uy) =Ax, 1)

__________ ©------=g----- Max A(x,u) = max Q(x,u) =1"(x)

’ et

Values max O(x,u) - O(x,u3) Qx,uy)
In state :

X <— maxA(x,u)— A(x,u3) = c[maxQ(x,u) ~Q(x, llg)j|
i u u
Alx, uj)’/’s
i | |
S
1 2 3
Actions

Figure 7: The action values in state x before and after transforming the O-function into an Advantage
function.

For a single state, x, both the original action-value function and the resulting Advantage

function are plotted in Figure 7. The dashed line indicates the maximum action-value in

18

state x, which is by definition the value of the state, /(x). As is required by property (7),
max A(x,u) = max O(x,u), which ensures that the policy remains unchanged as a result
of the transformation. Neither has dj, been affected by the transformation. Observe that
the difference in action values in the original function (Q-function) is small. However,
after the transformation, the differences in action values in the new function (Advantage
function) have been greatly exaggerated. The dynamic range of action values, d,,, within a
given state are controlled by c. In other words, d,. has been scaled by a factor of ¢ and
d;» has not been changed, so D;, has been reduced by a factor of ¢, resulting in a

diminished degree of sensitivity.

Choosing ¢

Ideally, one would like to choose the function ¢ such that D,,=1 for all states. A function
that satisfies this criterion is called ¢”. It will rarely be the case that we have enough
information a priori to determine ¢*. However, it is not difficult to develop heuristic
approximations of ¢ that result in “good” Advantage functions. For example, if the MDP
is an approximation of an underlying continuous time system, then a good approximation

.. 1
of ¢ might be KA where At is the time step duration for the chosen action and K is an

arbitrary constant. As At is halved, the change in the total discounted reward received as a
result of performing a single sub-optimal action is halved. In other words, d,, is halved

) 1
and D;, is doubled, resulting in increased sensitivity. Choosing c¢(x,u) = XA counteracts

the increase in D;, and causes the underlying Advantage function to remain independent of

At for small Ar.

4.2 Example: Hall Problem

To illustrate that the policy implied by the Advantage function is less sensitive to
generalization than the original Q-function, we return to the Hall Problem described in
Section 3.4. Here we describe a set of experiments identical to those presented in Section

3.4.2. with two exceptions: the function approximated was the Advantage function and

19

no optimization was performed on the learning rate. The optimal scaling function ¢” was
approximated by letting c(x,#) equal K/Ax for all (x,u) pairs, where Ax is the transition
distance and K=0.2 is a scaling factor chosen to cause O and 4" to be the same function
for MDP M,. For example, c(x,u)=K/Ax=.2/.2=1 for all (x,u) pairs in My, which results in

AQe,u)y=0(x,u) for all state-action pairs. The results are summarized in Figure 8.

M;

1000 +
@ 100 + —O— Q-function
5 —&— A-function

&
10
1
0

Figure 8: Comparison of time to learn optimal policy in Q-function and Advantage function

These results demonstrate that the number of epochs required to achieve 7" in every state
is independent of the number of states in an optimal trajectory. It is always the case that a
function c exists that causes Dy, to remain unchanged as d,.1 changes. Using the heuristic
described above for choosing the function ¢ resulted in a D;, of approximately 2.2 for each
of the Advantage functions. Therefore, we performed supervised learning on essentially

the same objective function for each MDP. This is demonstrated in Figures 9-12 below.

20

Alx,u)

Ax,u)

A(x,u)

02 ¢

04+ A(x forward)

-06 1

A(x,backward)

X

Figure 9: MDP M,, D,,=2.04

A(x forward)

A(x,backward)

X

Figure 10: MDP M,, D,,=2.28

02+
0.4 1
06 +
08

-1
1.2

A(x,forward)

A(x,backward)

-1.4
X

Figure 11: MDP M,, D,,=2.40

21

024
-0.4 1
061
-0.8

1
1.2 F
1.4

Ax,u)

A(x,backward)

X

Figure 12: MDP M3, D;,=2.46

4 3 Semi-Markov Decision Processes: Addressing Dy,

Section 3.2.1. defined variables to describe two distinct properties of action-value
functions. We illustrated the effects of the first, state-action dynamic range (Ds.), on the
degree of sensitivity in the policy with respect to small changes in the parameter vector of
the function approximator. Here we address the second property, action-action dynamic

range (D,,), and discuss how it may exaggerate sensitivity.

4.3.1. Action-Action Dynamic Range and d,,»

In Section 3.2.1. D,.(x,u) was defined to be equal to A1 (%) g

d,.(x,u)= [muax O(x, u)} —O(x,u) and d_, (x) = maxQ(x,u) —minQ(x,u) . This ratio

is demonstrated graphically in Figure 13.

Action Values
Inx

U u U;

Figure 13: D,,(x,u1)=dun (X)/ dava(x,u1)

22

It may be that the degree of sensitivity in the implied policy in state x is directly related to
the magnitude of max D, (x,u). Why should this be the case?

Consider a variation of the Hall problem presented in Section 4.2. In this variation the hall
is replaced with a tight rope suspended between two platforms high above a concrete
floor. An RL acrobat, with perfect balance, is given the task of crossing from one
platform to the other in the fewest number of steps. The class of MDPs is parameterized
by the height of the platform from the floor. In each state the acrobat can perform one of
three possible actions: 1) step forward, 2) step backward, and 3) step to the side. Each
step moves 1 foot along the rope and incurs unit cost. A step to the side (a step off of the
rope) incurs a cost equal to the height of the platform from the floor, however the acrobat
is secured by a tether that allows her to climb back to the location on the tight rope from
which she fell with no cost. All costs (negative rewards) are undiscounted. The length of
the tight rope is 50 feet, resulting in d,,=50. If we assume a platform height of 51 feet,
then D=1 for all x, the ideal state-action dynamic range. However, a new problem now
exists. A plot of the values for the three actions in state 25 (the middle of the rope) is

presented in Figure 14.

A ? '\" """" R R R ? s
Action Values dm.g=Q(x,fomvard)—Q(x,;bacl\ward)
da\'2:2 1
for !
x=25 : —— d 2 =O(x forward)-Q(x.side)
L dan=50
¢
| | ,'
backward forward side

Figure 14: D=1, D,,=25

To adequately approximate 7, the function approximator must accurately reflect the
ordering of the values for forward and backward. The acrobat will devote much function
approximator resources to representing the knowledge that stepping to the side will result

in a very large cost, but this will come at the expense of accurately discriminating between

23

the values of stepping forward and stepping backward. The degree of accuracy required
for differentiating between these two actions increases with the height of the platform.
This will necessarily result in an increase in the sensitivity in the implied policy as well.
Consider what happens if we double the height of the platform. Figure 15 demonstrates
that it becomes increasingly difficult to differentiate between the values of forward and
backward. Essentially, the acrobat will quickly learn not to take a step to the side, but it
will not easily be able to determine if it should step forward or backward. As we discuss
in the next section, approximating Advantage functions rather than O-functions solves this

problem as well, given an appropriate choice of c.

P ‘.° A I
N |
Action Values meQ(x,forward)-Q(x,l!)ackward)
for av2=2 :
x=25 : —— d=0(x forward)-Q(x,side)
; =100
$
l ! !
T i)
backward forward side

Figure 15: Dy,=0.5, D,,=50

4.3.2. Semi-Markov Decision Processes

In previous sections we have assumed that actions are performed at each of a sequence of
unit time intervals. However, if using a hierarchical RL framework, actions at any of the
abstract levels in the hierarchy may be made at varying integral multiples of the unit time
interval. The interval between actions may be predetermined or random. Also, if a
continuous-time decision problem is treated as a discrete-time system where actions are
made upon change of state, actions may be made at varying time intervals. In these cases,
the framework is known as a semi-Markov decision process (SMDP). Such processes can
be treated the same as MDPs to a large extent by taking the reward on each discrete

transition as the integral of the reward over the corresponding continuous-time interval for

24

the continuous-time case, or the sum of the rewards over the duration of the

corresponding sequence of unit time intervals in the discrete-time case.

In the SMDP framework it may be likely that D,, is quite large. If rewards for actions are
a function of the duration of the transition, then it will be quite common for action values
within a given state to differ greatly, resulting in a large D,,. In the special case that the
action set within a given state is a combination of “primitive” actions (actions that have a
duration of unit time) and “macro” actions (actions that have a duration of more than unit
time), D.. will very likely be large. Only in the case that the macro actions have roughly

the same values as the primitive actions will D,, not be an issue with regard to sensitivity.

Large action-action dynamic range ratios are not restricted to SMDPs. They may also

occur in MDPs, as demonstrated in Section 4.3.1.

4.3.3 Revised Hall Problem

To demonstrate the relationship between sensitivity and D,, we again use a variation of the
Hall problem. The problem specification is changed by adding macro actions to the action
set in each state. The length of the hallway is fixed at one hundred primitive steps.
Speciﬁcally, X= {—49,—48,—47,...,—1,0,1,...,48,49,50} and U, = {mleﬁ,leﬁ,right,mright} where
mleft and mright are macro actions and » is the length of these actions measured in state
transitions. The class of MDPs, M, is parameterized by n. State space “wraps around”
forming a cycle. For example, f(50,right) =—49 . As in the original problem
specification, there exists a single terminal state, x=0. The reward for each primitive
actionis 0.01. The reward for each macro action is #(.01) where » is the number of state

transitions.

In each of the examples presented below, we assume the rewards are not discounted and

are being minimized. We begin by comparing the O-function and Advantage function for

25

; M. In M, the primitive actions and macro actions are of the same duration, 1 state

transition.

Q(x,mleft)
O Q(x,left)
Q(x,right)
X Q(x,mright)

Value

T

o - w M
¥ 0N e

State (x)

11 3

Figure 16: The optimal Q-function for M, the length of the macro actions is 1 unit.
Dy=25, Dy=1.

+ A(x,mleft)
O A(x,left)

A A(xright)
X A(x,mright)

Value

eweonrggs

|
|
i HHi HHHHHH R
State (x)

Figure 17: The optimal Advantage function for M; with ¢=25 for all state-action pairs, including macros.
Dsa: 1 > Daa= 1

The state-action dynamic range ratio, Dy, is quite large in the optimal O-furction for
MDP M;, shown in Figure 16. A choice of c(x,u)=25 for all state-action pairs (a choice of
¢’) results in an Advantage function with a Dy, ratio of 1. The action-action dynamic
range ratio, D,,, for both functions is 1 because the duration of the macro actions equals

the duration of the primitive actions. However, it is important to consider how D,,

26

changes as the duration of the macro actions increases. If we maintain a valne of 25 for all

state-action pairs in ¢, then D,,22 in M», D,,~4 in My, and D,,~8 in Ms.

The optimal Q-function for MDP My is presented in Figure 18 below. Each macro action
has a duration of 16 state transitions. The O-function now has 2 large dynamic range
ratios, D,,~25 and D,,~16. These ratios are presented as approximations because the

actual values now vary as a function of state and action.

+ Q(x,mieft)
O Q(x,left)

A Q(x,right)
X Q(x,mright)

Value

State (x)
Figure 18: The optimal Q-function for MDP M;s. D,,=25, D,~16.

The Advantage function for MDP M, choosing the optimal ¢ for each state-action pair, is
presented in Figure 19. Note that using ¢" results in each sub-optimal action have unit

distance from the optimal action in each state.

+ A(x,mleft)
O A(x left)

A A(xright)
X A(x,mright)

Value

State (x)

Figure 19: The optimal Advantage function for MDP M;¢ using ¢". D=1, D,=1.

27

However, as stated in Section 4.1, it is rarely the case that we have enough information to
determine the function ¢”. So it is reasonable to question the quality of the Advantage
function that results from using heuristics to choose the function ¢. In the Pall problem
presented in Section 4.2 we chose to use a constant value for the ¢ function. The value
chosen for ¢ was based on the change in state, Ax, resulting from performing a single
action. This accomplished the goal of re-scaling the state-action dynamic range ratio, Dy,
and resulted in greatly decreasing the time required to achieve the stopping criteria in our
experiments. Can we expect a constant scaling function ¢ to produce similar results for
SMDPs? As stated earlier, as the duration of the macro actions increases the action-action

dynamic range ratio also increases. The Advantage function for MDP M6 with a choice

of c(x,u)=25 for all state-action pairs is presented in Figure 20 below.

9
g L MR
»*
74 F 5+ X
+ X+ X
6 _',!' >><< -_i; >><< + A(x,mleft)
55+ ¥ X % X O A(x,left)
S 4+ # X % X AA(Xright)
. X +)
il- % L >>(< X A(x,mright)
H- X + X
5 X -!-'_ X

State (x)

Figure 20: The optimal Advantage function for MDP M, with a choice of ¢(x,u)=25 for all state-action

pairs. D16

This choice of ¢ results in an action-action dynamic range ratio, D,,, as large as 16 in many
states. However, Figure 20 suggests a heuristic. Let the term regret be defined as the
change in the total reward received as a result of performing a single sub-optimal action.
For the problem at hand, we define a single unit of regret to be equal to the change in the
total reward received as a result of performing a single sub-optimal primitive action.
Using this definition it is clear that performing a single sub-optimal macro action can result

in as much as 16 units of regret (16 times more than a single primitive action). This

28

suggests scaling the value of ¢(x,u) by a factor of 1/16 for all macro actions. More
generally, let the choice of ¢ be a function of the duration of the action. For MDP M, the
duration of the macro actions and primitive actions are the same. Therefore we can use a
constant scaling factor of 25 for all state-action pairs. For MDP M, let
c(x,mleft)=c(x,left)/4=6.25, and in Mg c(x,mlefi)=c(x,left)/8=3.125. Using this heuristic,
we construct the following function: c(x,2)=K/I(u) where K is the state-action dynamic
range ratio scaling factor and has a value of 25, and /() is the action-action dynamic range
ratio scaling factor and equals the duration of action # measured in state transitions. The

resulting Advantage function is shown in Figure 21.

+ A(x,mleft)
O A(x,left)

A A(xright)
X A(x,mright)

Value

—
¢ - N O <

D O v = o
~

State (x)

Figure 21: The Advantage function resulting from a choice of c(x,u)=K/l(u) where X is the Dy, scaling
factor and /(u) is the D,, scaling factor.

4.3.4 Empirical Results

Again, we performed supervised learning experiments to demonstrate the desirability of
approximating Advantage functions over Q-functions. In our experiments the optimal
action-value functions of MDPs M;, M,, M, and M5 were used as objective functions. In
each experiment a double-hidden-layer, sigmoidal network was used to represent the
action-value function. Each hidden layer contained 2 bipolar sigmoids with a range (-1,1).
The inputs of the network were the state, x, the action, v, and a bias. All parameters were

initialized to random values between -1 and 1.

29

Again, by a trial we mean the process of performing parameter updates until the stopping
criteria is met. The stopping criterion is to achieve an approximation of the action-value
function that implies the optimal policy in every state. Batch weight updates were
performed; the parameters of the function approximator were updated only after the
presentation of all input-output pairs. The performance measure was the number of

parameter updates required before achieving the stopping criterion.

After much effort and optimization, the stopping criteria was never achieved when
approximating the optimal Q-function for the simplest MDP in the class, M, (see Figure
16). However, the stopping criteria was achieved after 650 epochs when approximating

the optimal Advantage function for the same MDP (see Figure 17).

Averaged over multiple trials with different random number seeds, the system performed
an average of 650 epochs before achieving the stopping criteria for MDPs M;, M, and
M,. The system performed an average of 850 epochs before achieving the stopping
criteria for MDP M (see Figure 21).

To demonstrate the effects of a large action-action dynamic range ratio, D,,, in a second
set of experiments we chose to use a constant scaling function ¢ with a value of 25 (c" for
MDP M,) for MDP M,s. This choice of ¢ resulted in an action-action dynamic range ratio
of 16 in many of the states. As expected, even after much optimization the system was

never able to achieve the stopping criteria.

5. Conclusion

We have presented one approach to reducing sensitivity resulting from a large state-action
dynamic range and/or a large action-action dynamic range. One might ask if it is possible

to address sensitivity issues by choosing an appropriate function approximator rather then
changing the objective function. The answer is yes. Specifically, one might eliminate all

sensitivity resulting from a large action-action dynamic range by using a separate function

30

approximator for each action. Likewise, one might eliminate all sensitivity resulting from
a large state-action dynamic range by using a separate function approximator for each
state. Of course, this solution relegates our choice of function approximator to a simple

look-up table.

It will certainly be possible in some cases to hand craft a function approximator to work
with a given MDP, given enough a priori information about the optimal action-value
function. However, we propose that approximating Advantage functions is a much more

general and robust approach.

Appendix

Advantage Learning

Given Equation 3 we can derive an RL algorithm that finds an approximation of the
Advantage function. We call this algorithm Advantage Learning (Harmon and Baird,

1996a). We begin by constructing a Bellman equation for Advantage Learning.

A(x,u) = max O(x,u'y—c(x, u)_mz;x Ox,u") - O(x, u)]

A(x,u) = max O(x,u'y—ce(x,u) max Ox,u')y— E(R(x, u)+y max Q(x', u))}

Ax,u) = max A(x,u') —e(x. u)rmng(x, u')— E(R(x,u) +y max A(x", u)):| @)

where £ indicates the expected value of performing action # in state x, and x'is the state
resulting from choosing action # in state x. A standard backup operation is given in

Equation 5.

A(x,u)(i max A(x,u") ~ c(x,u)[ma'lx A(x,u')— E(R(x, u)+y max A(x' ,u)ﬂ (5)

However, for reasons beyond the scope of this document, Equation 5 is not guaranteed to

converge when using a lookup table as the function approximator. Therefore, we define

31

Advantage Learning as a residual algorithm (Baird, 1995). The Bellman residual is the
difference in the two sides of Equation 4. The mean squared Bellman residual for an

MDP with » states is therefore defined to be:
1 2
MSBR = ” Z(mgx A(x,u') —c(x, u)[me}x A(x,u')— E(R(x, u)+y max A(x', u)ﬂ - A(x,u))

Advantage Learning performs gradient descent on the MSBR, and is by definition a
residual algorithm. The vector of parameters, W, in the function approximation system is

updated according to Equation 6 below.

AW = —a(mugx A(x,u') —c(x, u)RR(x, u)+y max A(x', u')> — max A(x,u)} — A(x, u)) o

J 7 7 o
¢5 max A(x,u") — ge(x,u) }/—a—w—mua}x A(x',u')— gv—max A(x,u) |- W A(x,u)

(6)
where a is the step size parameter and ¢ is a constant that controls a trade-off between
pure gradient descent (when ¢ equals 1) and a fast direct algorithm (when ¢ equals 0). For

a full discussion of residual algorithms see Baird(1995).

References
Albus, J. S. (1981). Brain, Behavior, and Robotics. Byte Books, Peterborough, NH.

Baird, L. C. (1993). Advantage Updating. (Technical Report WL-TR-93-1146). Wright-Patterson Air
Force Base Ohio: Wright Laboratory. (available from the Defense Technical Information Center, Cameron
Station, Alexandria, VA 22304-6145).

Baird, L. C. (1994). Reinforcement Learning in Continuous Time: Advantage Updating Proceedings of
the International Conference on Neural Networks. Orlando, FL. June.

Harmon, M. E., Baird, L. C., and Klopf, A. H. (1995). Advantage Updating Applied to a Differential

Game. Gerald Tesauro, et. al., eds. Advances in Neural Information Processing Systems 7. pp. 353-360.
MIT Press, 1995.

32

Baird, L. C. (1995). Residual Algorithms: Reinforcement learning with function approximation. In
Proceedings of the Twelfth International Conference on Machine Learning, pp. 30-37. Morgan
Kaufmann, San Francisco.

Harmon, M. E., Baird, L. C., and Klopf, A. H. (1996). Reinforcement Learning Applied to a Differential
Game. Adaptive Behavior, MIT Press, (4)1, pp. 3-28.

Baird, L. C., Harmon, M. E., and Klopf, A. H. (1996). Reinforcement Learning: An Alternative Approach
to Machine Intelligence. CrossTalk, The Journal of Defense Software Engineering, (9)2, pp. 22-24.

Harmon, M. E., and Baird, L. C. (1996a). Multi-player residual advantage learning with general function
approximation. (Technical Report WL-TR-96-1065). Wright-Patterson Air Force Base Ohio: Wright
Laboratory. (available from the Defense Technical Information Center, Cameron Station, Alexandria, VA
22304-6145).

Harmon, M. E., and Baird, L.C. (1996b). Residual Advantage Learning Applied to a Differential Game.
Proceedings of the International Conference on Neural Networks (ICNN'96), Washington D.C., 3-6 June.

Puterman, M. L. (1994). Markov Decision Processes. New York: John Wiley & Sons, Inc.

Weaver, S., Baird, L., and Polycarpou, M. (1998). An Analytical Framework for Local Fecedfoward
Networks. IEEE Transactions on Neural Networks.

Watkins C. J. C. H. (1989). Learning from Delayed Rewards. Ph.D. thesis, Cambridge University.

33

REPORT DOCUMENTATION PAGE

Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this
collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson
Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY (Leave blank) |2. REPORT DATE 3. REPORT TYPE AND DATES COVERED

10.Jan.00

THESIS

4. TITLE AND SUBTITLE
APPROXIMATING ACTION-VALUE FUNCTIONS: ADDRESSING ISSUES OF

DYNAMIC RANGE

6. AUTHOR(S)
1ST LT HARMON MANCE E

5. FUNDING NUMBERS

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
UNIVERSITY OF MASSACHUSETTS AMHERST

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)
THE DEPARTMENT OF THE AIR FORCE

AFIT/CIA, BLDG 125

2950 P STREET

WPAFB OH 45433

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

Vo019

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION AVAILABILITY STATEMENT
Unlimited distribution
In Accordance With AFI 35-205/AFIT Sup 1

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)

14. SUBJECT TERMS

15. NUMBER OF PAGES
33

16. PRICE CODE

77. SECURITY CLASSIFICATION | 18. SECURITY CLASSIFICATION | 19. SECURITY CLASSIFICATION [20. LIMITATION OF

OF REPORT OF THIS PAGE OF ABSTRACT

ABSTRACT

Standard Form 298 (Rev. 2-89) (EG)
Prescribed by ANSI Std, 239.18
Designed using Perform Pro, WHS/DIOR, Oct 94

